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Introduction

Summary

This paper proposes an approach for the motion planning of a constrained
skid-steered tracked mobile robot under the hypothesis of non-negligible skid and
slip phenomena

Operating environment is discretized with a finite dimensional grid. Then, a
weighted graph is defined whose nodes are the above mentioned grid points, and
whose arcs denote the trajectory segments

A modified A* shortest path search algorithm is then proposed to find a trajectory,
in terms of succession of arcs, connecting starting and ending nodes. Trajectory
feasibility is guaranteed by recurring to set-based arguments

In order to show the effectiveness of the proposed approach, some numerical
examples are finally discussed
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Mathematical Modelling

Be q =
[
x y θ

]T the vector of coordinates for a skid-steered tracked mobile robot
expressed in a given inertial reference frame E.
At low velocities a a kinematic model can be used. The classical first-order
kinematic model is

q̇ = G(q) · ũ (1)

being

G(q) =

cos θ 0
sin θ 0

0 1

 (2)

and ũ =
[
Ṽ ω̃

]T where Ṽ (ω̃) denotes the effective forward (rotational) velocity.
According to the reference coordinates the kinematic relation between ũ and the
vector of effective angular velocities of the tracks sprockets w̃ =

[
w̃R w̃L

]T is:

ũ = J · w̃ (3)

being

J =

[
R/2 R/2
R/d −R/d

]
(4)

where R represents the radius of track sprocket and d the distance between the
two tracks.
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During rotation a skid-steered tracked vehicle experiences both skidding (inner
wheel) and slipping (outer wheel) effects.

The skidding and slipping effects can be modelled as terrain-dependent possibly
time-varying friction coefficients µR and µL for right and left track respectively.

A kinematic relation between w̃ and the controlled tracks sprockets angular
velocities w =

[
wR wL

]T is
w̃ = H(µ) · w (5)

where

H(µ) =

[
µR 0
0 µL

]
(6)

and µ =
[
µR µL

]T .

Finally, by assembling (1)-(5) the following nonlinear kinematic model representing
the motion of a skid-steered tracked robot in presence of skidding and slipping
effects is considered

q̇ = G(q) · J · H(µ) · J−1 · u = f (q, µ, u) (7)

being u =
[
V ω

]T the vector where V (ω) denotes the forward (rotational) control
velocity.
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Consider a local reference system L and be q0 =
[
x0 y0 θ0

]T .
The following transformation from E to L holds

qL = RL
E (θ0) · (q − q0) (8)

being

RL
E (θ0) =

 cos(θ0) sin(θ0) 0
−sin(θ0) cos(θ0) 0

0 0 1

 (9)
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Notations

Let
T D(·) =

[
qD(·) uD(·)

]
(10)

be a desired trajectory expressed in L reference system.

T D(·) is defined in terms of feasible couples of state and control inputs compliant
with non-holonomic constraints (1) over the time window [0, t̂] such that
qD(0) =

[
0 0 0

]
and uD(t) =

[
V D 0

]
.

V D represents the mobile robot forward velocity.

The desired state trajectory at the time t ∈
[
0, t̂
]

is denoted as follows:

qD(t) =
[
V D · t 0 0

]T .

Discrete LTI representation

By recurring to classical linearization and discretization arguments the following
discrete linear time invariant system, representing trajectory tracking error
dynamic, is obtained:

e(tk+1) = Ae(tk ) + Bδu(tk ) + BDd(tk ) (11)

being e = q − qD , δu = u − uD , d = µ− µD , being µD the nominal value of
friction coefficients
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Trajectory Tracking Control Design

Constraints
Given the discrete linear time invariant representation of tracking error (11), the
following ellipsoidal constraints are considered:

e(t) ∈ Ωe, Ωe , {e ∈ R3 : eT e ≤ e2
max} (12)

δu(t) ∈ Ωu , Ωu , {δu ∈ R2 : δuT δu ≤ u2
max} (13)

Constrained Control Problem (CCP)

Given (11) find the state feedback control action δu(·) = K · e(·) fulfilling the prescribed
constraints (12)-(13) for all the realizations of external disturbance d ∈ ΩD being

ΩD , {d ∈ R2 : dT d ≤ d2
max} (14)
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CCP Solution

1 Compute a stabilizing state-feedback control law δu(·) = Ke(·) accomplishing (12)
and (13) within the ellipsoidal positively invariant region1

Γ0 = {e ∈ R3 : eT P0e ≤ 1 P0 ≥ 0} (15)

2 Define the maximal ellipsoidal d-invariant subset2

Γ∞ = {e ∈ R3 : eT P∞e ≤ 1 P∞ ≥ 0} ⊆ Γ0 (16)

such that e(tk ) = Φk e(t0) +

k−1∑
h=0

Φk−1−hBDdh ∈ Γ0 (17)

∀tk ≥ 0 ∀e(t0) ∈ Γ∞ and ∀d(tj ) ∈ ΩD , tj < tk

being e(tk+1) = Φe(tk ) + BDd(tk ) (18)

the closed loop tracking error dynamic with Φ = (A + B · K ).

Remark
The above two step procedure provides a solution (K , Γ∞) of CCP in terms of
feedback control action δu(·) = Ke(·) within Γ∞ fulfilling the prescribed constraints
(12), (13) for all admissible d ∈ ΩD .

1V. Kothare et al., Robust constrained model predictive control using linear matrix inequalities 1996
2I. Kolmanovsky et al. Theory and computation of disturbance invariant sets for discrete time linear systems 1998
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Motion Planning Algorithm

Assumptions

Assume the trajectory tracking problem was tackled and a solution of CCP was
provided in terms of a couple (K , Γ∞)

Assume a 2D operational scenario ∆ ⊆ R2.

∆ is firstly discretized with a finite dimensional grid of feasible positions.

An undirected weighted graph G is then defined whose nodes V ∈ R2 are the
above mentioned grid points.

∆-compatibility

Two nodes E1 = (x1, y1) ∈ V and E2 = (x2, y2) ∈ V are ∆-compatible if ∀α ∈ [0, 1]

Pα = (xα, yα) ∈ ∆

with xα = (1−α)x1 +αx2 and yα = ηαxα + τα being ηα = y1−y2
x1−x2

and τα = x1y2−x2y1
x1−x2

8 / 18



Introduction Mathematical Modelling Trajectory Tracking Control Design Motion Planning Algorithm Numerical Results Conclusions

Arcs of graph G

Be A,B ∈ V two ∆-compatible nodes.

Arc connecting A and B is denoted as

T AB(·) =
[
qAB(·) ũAB

]
(19)

It represents, in a local reference frame centred in A and such that B belongs to robot
positive x-axis, the trajectory crossing the segment ĀB at the constant velocity VAB for
NAB time steps with a null angular velocity being qAB(t) =

[
VAB · t 0 0

]
and

ũAB = [VAB 0]T solution of (1) over the time horizon t ∈ [0,Ts · NAB ]. NAB is the
maximum positive integer such that

NAB ≤
dAB

VAB · Ts
(20)

Arc Cost

Arc cost is assumed to be dAB the length of segment ĀB.
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Given three nodes A,B,C ∈ V suppose the segments A,B and B,C are both
∆-compatibles. Consider a path including the two adjacent arcs T AB and T BC

If the robot has to track planned trajectory, a switch from T AB to T BC at switching
time tNAB = Ts · NAB is required
Switching is considered admissible if the following condition is fulfilled:

(e(tNAB ) + Π) ∈ Γ∞ (21)

where e(tNAB ) is the tracking error at switching time and

Π =
[
xB − xD(tNAB ) yB − yD(tNAB ) δθ

]T (22)

A trajectory is feasible if every switch between trajectory segments is admissible,
feasibility is guaranteed by a conservative check involving admissibility of switches
between arcs

A

B
C

yB

δθ

xB
xE

yE

x(tNAB
)

xD(tNAB
)

y(tNAB
)

yD(tNAB
)
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Lemma 1

Suppose the tracking error at the time instant e(t0) ∈ SA being

SA = {e ∈ Γ∞ : eT PAe ≤ 1, PA ≥ 0} (23)

The ellipsoidal set
SNAB = {e ∈ Γ∞ : eT Ψe ≤ 1, Ψ ≥ 0} (24)

representing the set of allowable tracking error e(tNAB ) for every admissible realization
of the disturbance d(th) ∈ ΩD with h = 0 · · · (NAB − 1) can be obtained by solving the
following SDP minimization problem:

min
Ψ,τ0,···τNAB

logdetΨ−1 (25)

s.t.

1−
NAB−1∑

h=0

τhd2
max − τNAB ≥ 0 (26)

[
−Φ̂T ΨΦ̂ + τNAB PA −Φ̂T ΨH

∗ −HT ΨH +
∑NAB−1

h=0 τhJT
h Jh

]
≥ 0 (27)

being τh with h = 0 · · ·NAB positive scalars, Ψ ≥ 0, Φ̂ = ΦNAB ,
H =

[
ΦNAB−1BD ΦNAB−2BD · · · BD

]
, Jh the matrix of proper dimension such

that Jhd = d(th) being d =
[
d(t0)T d(t1)T · · · d(tNAB )T ]T
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Motion Planning Algorithm

Given a solution of Lemma 1, tracking error switch Π is assumed admissible

SNAB

⊕
Π ⊆ Γ∞ (28)

and then T BC can follow T AB in a feasible trajectory if there exists τ > 0 such that the
following LMI holds [

1− τ − ΠT P∞Π ∗
−P∞Π −P∞ + τPA

]
≥ 0 (29)

Considerations

All the above considerations can be readily recast into a recursive algorithm.
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Numerical Results
Robot Specifications

Consider a skid-steered tracked mobile robot with a radius of track sprocket R = 8cm
and a distance between the two tracks d = 50cm. The following constraints are
considered:

a the terrain-dependent friction coefficients are supposed bounded

µR , µL ∈ (0.7, 1.2) (30)

b the following constraints on the control velocities are considered

0 ≤ V ≤ 1.4
[
m/s

]
and− 2.15 ≤ ω ≤ 2.15

[
rad/s

]
(31)

Assumptions

The two-dimensional space domain ∆ was discretized by recurring to a regular
grid of 0.2m with about 270 resulting nodes.

In order to construct the graph G a maximum length of 0.5m is assumed for
trajectory segment connecting two ∆− compatibles nodes.

A nominal forward velocity is assumed constant along the trajectory segments
V D = 0.7 [m/s].
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Simulation Scenario #1

X[m]

Y[m
]

Red solid line represents the optimal feasible trajectory resulting from the
proposed algorithm connecting starting (square) and ending (circle) nodes
Black solid lines denote the robot trajectories obtained by means of numerical
simulations at varying robot initial pose and constant friction coefficients.
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Simulation Scenario #1
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Forward and rotational velocities

The whole trajectory includes 10 segments with an overall length of about 3.93m

Red-dashed lines represent control velocities constraints

Black solid lines denote the forward and angular control velocities obtained at
varying robot initial pose.
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Simulation Scenario #2
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Three additional obstacles (black boxes) are considered in the operating
environment.
Red line denotes an optimal feasible trajectory including 14 segments with a full
length of about 6.5m.
In such a scenario the optimal trajectory requires a loop to perform required
90deg turn.
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Simulation Scenario #2

Forward and rotational velocities
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Conclusions

In this paper the problem of motion planning of a skid- steered tracked mobile
robot subject to skid and slip phenomena is tackled;

A feedback control action is firstly designed to achieve trajectory tracking of mobile
robot accounting for constraints on trajectory tracking error and robot control
velocities;

In order to find optimal feasible trajectory in terms of succession of segments to
cross with an assigned nominal velocity, a procedure based on the A* shortest
path algorithm is proposed;

Trajectory feasibility is guaranteed by recurring to set based arguments involving
the solution of SDP minimization problems;

Finally, some numerical simulations are discussed to show effectiveness of the
proposed approach.
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A∗ − like

A∗ − like algorithm is adopted to compute a shortest path (if any) in terms of a
succession of arcs connecting starting V0 ∈ V and ending VF ∈ V nodes.

A∗ algorithm is a classical approach in searching the best path in a graph. It relies
upon exploration of the most promising arc according to an heuristic function
estimating the lower-bound of the cost of path including arcs to be explored.

A∗ guarantees the exploration of fewer nodes than any other algorithm using the
same heuristic if the heuristic function never overestimates the cost of path.

The considered heuristic function is sum of two terms: a) the cost of computed
path; b) the euclidean distance between the last explored node and destination
node.

If a succession of arcs WOF connecting VO and VF is explored, cost of path γOF
becomes an upper bound of the heuristic function. Thus, a path stops being
explored when its heuristic exceeds the current upper bound.

Upper bound must be updated if a shorter path reaching the destination node is
found.
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