Feasible trajectory planning algorithm for a skid-steered tracked mobile robot subject to skid and slip phenomena

V. A. Nardi A. Ferraro V. Scordamaglia

DIIES - Università degli Studi di Reggio Calabria - Reggio Calabria(RC) -ITALY


Università degli Studi Mediterranea di Reggio Calabria

## Introduction

## Summary

■ This paper proposes an approach for the motion planning of a constrained skid-steered tracked mobile robot under the hypothesis of non-negligible skid and slip phenomena

■ Operating environment is discretized with a finite dimensional grid. Then, a weighted graph is defined whose nodes are the above mentioned grid points, and whose arcs denote the trajectory segments

- A modified A* shortest path search algorithm is then proposed to find a trajectory, in terms of succession of arcs, connecting starting and ending nodes. Trajectory feasibility is guaranteed by recurring to set-based arguments
- In order to show the effectiveness of the proposed approach, some numerical examples are finally discussed


## Mathematical Modelling

- Be $q=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$ the vector of coordinates for a skid-steered tracked mobile robot expressed in a given inertial reference frame $\mathbf{E}$.
- At low velocities a a kinematic model can be used. The classical first-order kinematic model is

$$
\begin{equation*}
\dot{q}=G(q) \cdot \tilde{u} \tag{1}
\end{equation*}
$$

being

$$
G(q)=\left[\begin{array}{cc}
\cos \theta & 0  \tag{2}\\
\sin \theta & 0 \\
0 & 1
\end{array}\right]
$$

and $\tilde{u}=\left[\begin{array}{ll}\tilde{V} & \tilde{\omega}\end{array}\right]^{T}$ where $\tilde{V}(\tilde{\omega})$ denotes the effective forward (rotational) velocity.
$\square$ According to the reference coordinates the kinematic relation between $\tilde{u}$ and the vector of effective angular velocities of the tracks sprockets $\tilde{w}=\left[\tilde{w}_{R} \tilde{w}_{L}\right]^{T}$ is:

$$
\begin{equation*}
\tilde{u}=J \cdot \tilde{w} \tag{3}
\end{equation*}
$$

being

$$
J=\left[\begin{array}{cc}
R / 2 & R / 2  \tag{4}\\
R / d & -R / d
\end{array}\right]
$$

where $R$ represents the radius of track sprocket and $d$ the distance between the two tracks.

■ During rotation a skid-steered tracked vehicle experiences both skidding (inner wheel) and slipping (outer wheel) effects.
■ The skidding and slipping effects can be modelled as terrain-dependent possibly time-varying friction coefficients $\mu_{R}$ and $\mu_{L}$ for right and left track respectively.
■ A kinematic relation between $\tilde{w}$ and the controlled tracks sprockets angular velocities $w=\left[\begin{array}{ll}w_{R} & w_{L}\end{array}\right]^{T}$ is

$$
\begin{equation*}
\tilde{w}=H(\mu) \cdot w \tag{5}
\end{equation*}
$$

where

$$
H(\mu)=\left[\begin{array}{cc}
\mu_{R} & 0  \tag{6}\\
0 & \mu_{L}
\end{array}\right]
$$

and $\mu=\left[\begin{array}{ll}\mu_{R} & \mu_{L}\end{array}\right]^{T}$.
■ Finally, by assembling (1)-(5) the following nonlinear kinematic model representing the motion of a skid-steered tracked robot in presence of skidding and slipping effects is considered

$$
\begin{equation*}
\dot{q}=G(q) \cdot J \cdot H(\mu) \cdot J^{-1} \cdot u=f(q, \mu, u) \tag{7}
\end{equation*}
$$

being $u=[V \omega]^{T}$ the vector where $V(\omega)$ denotes the forward (rotational) control velocity.

- Consider a local reference system $\mathbf{L}$ and be $q_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & \theta_{0}\end{array}\right]^{T}$.
- The following transformation from $\mathbf{E}$ to $\mathbf{L}$ holds

$$
\begin{equation*}
q_{L}=R_{E}^{L}\left(\theta_{0}\right) \cdot\left(q-q_{0}\right) \tag{8}
\end{equation*}
$$

being

$$
R_{E}^{L}\left(\theta_{0}\right)=\left[\begin{array}{ccc}
\cos \left(\theta_{0}\right) & \sin \left(\theta_{0}\right) & 0  \tag{9}\\
-\sin \left(\theta_{0}\right) & \cos \left(\theta_{0}\right) & 0 \\
0 & 0 & 1
\end{array}\right]
$$



## Notations

■ Let

$$
\begin{equation*}
T^{D}(\cdot)=\left[q^{D}(\cdot) \quad u^{D}(\cdot)\right] \tag{10}
\end{equation*}
$$

be a desired trajectory expressed in $\mathbf{L}$ reference system.

- $T^{D}(\cdot)$ is defined in terms of feasible couples of state and control inputs compliant with non-holonomic constraints (1) over the time window $[0, \hat{t}]$ such that $q^{D}(0)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $u^{D}(t)=\left[\begin{array}{ll}V^{D} & 0\end{array}\right]$.
- $V^{D}$ represents the mobile robot forward velocity.
- The desired state trajectory at the time $t \in[0, \hat{t}]$ is denoted as follows: $q^{D}(t)=\left[\begin{array}{lll}V^{D} \cdot t & 0 & 0\end{array}\right]^{T}$.


## Discrete LTI representation

■ By recurring to classical linearization and discretization arguments the following discrete linear time invariant system, representing trajectory tracking error dynamic, is obtained:

$$
\begin{equation*}
e\left(t_{k+1}\right)=A e\left(t_{k}\right)+B \delta u\left(t_{k}\right)+B_{D} d\left(t_{k}\right) \tag{11}
\end{equation*}
$$

being $e=q-q^{D}, \delta u=u-u^{D}, d=\mu-\mu^{D}$, being $\mu^{D}$ the nominal value of friction coefficients

## Trajectory Tracking Control Design

## Constraints

Given the discrete linear time invariant representation of tracking error (11), the following ellipsoidal constraints are considered:

$$
\begin{gather*}
e(t) \in \Omega_{e}, \Omega_{e} \triangleq\left\{e \in \mathcal{R}^{3}: e^{T} e \leq e_{\max }^{2}\right\}  \tag{12}\\
\delta u(t) \in \Omega_{u}, \Omega_{u} \triangleq\left\{\delta u \in \mathcal{R}^{2}: \delta u^{T} \delta u \leq u_{\max }^{2}\right\} \tag{13}
\end{gather*}
$$

## Constrained Control Problem (CCP)

Given (11) find the state feedback control action $\delta u(\cdot)=K \cdot e(\cdot)$ fulfilling the prescribed constraints (12)-(13) for all the realizations of external disturbance $d \in \Omega_{D}$ being

$$
\begin{equation*}
\Omega_{D} \triangleq\left\{d \in \mathcal{R}^{2}: d^{T} d \leq d_{\max }^{2}\right\} \tag{14}
\end{equation*}
$$

## CCP Solution

1 Compute a stabilizing state-feedback control law $\delta u(\cdot)=K e(\cdot)$ accomplishing (12) and (13) within the ellipsoidal positively invariant region ${ }^{1}$

$$
\begin{equation*}
\Gamma_{0}=\left\{e \in \mathcal{R}^{3}: e^{T} P_{0} e \leq 1 \quad P_{0} \geq 0\right\} \tag{15}
\end{equation*}
$$

2 Define the maximal ellipsoidal $d$-invariant subset ${ }^{2}$

$$
\begin{gather*}
\Gamma_{\infty}=\left\{e \in \mathcal{R}^{3}: e^{T} P_{\infty} e \leq 1 P_{\infty} \geq 0\right\} \subseteq \Gamma_{0}  \tag{16}\\
\text { such that } e\left(t_{k}\right)=\Phi^{k} e\left(t_{0}\right)+\sum_{h=0}^{k-1} \Phi^{k-1-h} B_{D} d_{h} \in \Gamma_{0}  \tag{17}\\
\forall t_{k} \geq 0 \forall e\left(t_{0}\right) \in \Gamma_{\infty} \text { and } \forall d\left(t_{j}\right) \in \Omega_{D}, t_{j}<t_{k} \\
\text { being } e\left(t_{k+1}\right)=\Phi e\left(t_{k}\right)+B_{D} d\left(t_{k}\right) \tag{18}
\end{gather*}
$$

the closed loop tracking error dynamic with $\Phi=(A+B \cdot K)$.

## Remark

The above two step procedure provides a solution $\left(K, \Gamma_{\infty}\right)$ of CCP in terms of feedback control action $\delta u(\cdot)=K e(\cdot)$ within $\Gamma_{\infty}$ fulfilling the prescribed constraints (12), (13) for all admissible $d \in \Omega_{D}$.

[^0]
## Motion Planning Algorithm

## Assumptions

■ Assume the trajectory tracking problem was tackled and a solution of $C C P$ was provided in terms of a couple ( $K, \Gamma_{\infty}$ )

- Assume a 2D operational scenario $\Delta \subseteq \mathcal{R}^{2}$.
$\square \Delta$ is firstly discretized with a finite dimensional grid of feasible positions.
- An undirected weighted graph $\mathcal{G}$ is then defined whose nodes $V \in R^{2}$ are the above mentioned grid points.


## $\Delta$-compatibility

Two nodes $E_{1}=\left(x_{1}, y_{1}\right) \in V$ and $E_{2}=\left(x_{2}, y_{2}\right) \in V$ are $\Delta$-compatible if $\forall \alpha \in[0,1]$

$$
P_{\alpha}=\left(x_{\alpha}, y_{\alpha}\right) \in \Delta
$$

with $x_{\alpha}=(1-\alpha) x_{1}+\alpha x_{2}$ and $y_{\alpha}=\eta_{\alpha} x_{\alpha}+\tau_{\alpha}$ being $\eta_{\alpha}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ and $\tau_{\alpha}=\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}$

## Arcs of graph $\mathcal{G}$

- Be $A, B \in V$ two $\Delta$-compatible nodes.
- Arc connecting $A$ and $B$ is denoted as

$$
T^{A B}(\cdot)=\left[\begin{array}{ll}
q^{A B}(\cdot) & \tilde{u}^{A B} \tag{19}
\end{array}\right]
$$

It represents, in a local reference frame centred in $A$ and such that $B$ belongs to robot positive x-axis, the trajectory crossing the segment $\overline{A B}$ at the constant velocity $V_{A B}$ for $N_{A B}$ time steps with a null angular velocity being $q^{A B}(t)=\left[\begin{array}{lll}V_{A B} \cdot t & 0 & 0\end{array}\right]$ and $\tilde{u}^{A B}=\left[V_{A B} 0\right]^{T}$ solution of (1) over the time horizon $t \in\left[0, T_{s} \cdot N_{A B}\right] . N_{A B}$ is the maximum positive integer such that

$$
\begin{equation*}
N_{A B} \leq \frac{d_{A B}}{V_{A B} \cdot T_{s}} \tag{20}
\end{equation*}
$$

## Arc Cost

- Arc cost is assumed to be $d_{A B}$ the length of segment $\overline{A B}$.
- Given three nodes $A, B, C \in V$ suppose the segments $A, B$ and $B, C$ are both $\Delta$-compatibles. Consider a path including the two adjacent arcs $T^{A B}$ and $T^{B C}$
■ If the robot has to track planned trajectory, a switch from $T^{A B}$ to $T^{B C}$ at switching time $t_{N_{A B}}=T_{s} \cdot N_{A B}$ is required
$\square$ Switching is considered admissible if the following condition is fulfilled:

$$
\begin{equation*}
\left(e\left(t_{N_{A B}}\right)+\Pi\right) \in \Gamma_{\infty} \tag{21}
\end{equation*}
$$

where $e\left(t_{N_{A B}}\right)$ is the tracking error at switching time and

$$
\Pi=\left[\begin{array}{lll}
x_{B}-x^{D}\left(t_{N_{A B}}\right) & y_{B}-y^{D}\left(t_{N_{A B}}\right) & \delta_{\theta} \tag{22}
\end{array}\right]^{T}
$$

■ A trajectory is feasible if every switch between trajectory segments is admissible, feasibility is guaranteed by a conservative check involving admissibility of switches between arcs


## Lemma 1

Suppose the tracking error at the time instant $e\left(t_{0}\right) \in S_{A}$ being

$$
\begin{equation*}
S_{A}=\left\{e \in \Gamma_{\infty}: e^{T} P_{A} e \leq 1, P_{A} \geq 0\right\} \tag{23}
\end{equation*}
$$

The ellipsoidal set

$$
\begin{equation*}
S_{N_{A B}}=\left\{e \in \Gamma_{\infty}: e^{T} \Psi e \leq 1, \Psi \geq 0\right\} \tag{24}
\end{equation*}
$$

representing the set of allowable tracking error $e\left(t_{N_{A B}}\right)$ for every admissible realization of the disturbance $d\left(t_{h}\right) \in \Omega_{D}$ with $h=0 \cdots\left(N_{A B}-1\right)$ can be obtained by solving the following SDP minimization problem:

$$
\begin{equation*}
\min _{\Psi, \tau_{0}, \cdots \tau_{N_{A B}}} \log \operatorname{det} \Psi^{-1} \tag{25}
\end{equation*}
$$

s.t.

$$
\begin{gather*}
1-\sum_{h=0}^{N_{A B}-1} \tau_{h} d_{\max }^{2}-\tau_{N_{A B}} \geq 0  \tag{26}\\
{\left[\begin{array}{cc}
-\hat{\Phi}^{T} \Psi \hat{\Phi}+\tau_{N_{A B}} P_{A} & -\hat{\Phi}^{T} \Psi H \\
* & -H^{T} \Psi H+\sum_{h=0}^{N_{A B}-1} \tau_{h} J_{h}^{T} J_{h}
\end{array}\right] \geq 0} \tag{27}
\end{gather*}
$$

being $\tau_{h}$ with $h=0 \cdots N_{A B}$ positive scalars, $\Psi \geq 0, \hat{\Phi}=\Phi^{N_{A B}}$, $H=\left[\begin{array}{llll}\Phi^{N_{A B}-1} B_{D} & \Phi^{N_{A B}-2} B_{D} & \cdots & B_{D}\end{array}\right], J_{h}$ the matrix of proper dimension such that $J_{h} \underline{d}=d\left(t_{h}\right)$ being $d=\left[\begin{array}{llll}d\left(t_{0}\right)^{T} & d\left(t_{1}\right)^{T} & \cdots & d\left(t_{N_{A B}}\right)^{T}\end{array}\right]^{T}$

## Motion Planning Algorithm

Given a solution of Lemma 1, tracking error switch $\Pi$ is assumed admissible

$$
\begin{equation*}
S_{N_{A B}} \bigoplus \Pi \subseteq \Gamma_{\infty} \tag{28}
\end{equation*}
$$

and then $T^{B C}$ can follow $T^{A B}$ in a feasible trajectory if there exists $\tau>0$ such that the following LMI holds

$$
\left[\begin{array}{cc}
1-\tau-\Pi^{T} P_{\infty} \Pi & *  \tag{29}\\
-P_{\infty} \Pi & -P_{\infty}+\tau P_{A}
\end{array}\right] \geq 0
$$

## Considerations

- All the above considerations can be readily recast into a recursive algorithm.


## Numerical Results

## Robot Specifications

Consider a skid-steered tracked mobile robot with a radius of track sprocket $R=8 \mathrm{~cm}$ and a distance between the two tracks $d=50 \mathrm{~cm}$. The following constraints are considered:
a the terrain-dependent friction coefficients are supposed bounded

$$
\begin{equation*}
\mu_{R}, \mu_{L} \in(0.7,1.2) \tag{30}
\end{equation*}
$$

b the following constraints on the control velocities are considered

$$
\begin{equation*}
0 \leq V \leq 1.4[\mathrm{~m} / \mathrm{s}] \text { and }-2.15 \leq \omega \leq 2.15[\mathrm{rad} / \mathrm{s}] \tag{31}
\end{equation*}
$$

## Assumptions

■ The two-dimensional space domain $\Delta$ was discretized by recurring to a regular grid of $0.2 m$ with about 270 resulting nodes.
■ In order to construct the graph $\mathcal{G}$ a maximum length of 0.5 m is assumed for trajectory segment connecting two $\Delta$ - compatibles nodes.

- A nominal forward velocity is assumed constant along the trajectory segments $V^{D}=0.7[\mathrm{~m} / \mathrm{s}]$.


## Simulation Scenario \#1



■ Red solid line represents the optimal feasible trajectory resulting from the proposed algorithm connecting starting (square) and ending (circle) nodes
■ Black solid lines denote the robot trajectories obtained by means of numerical simulations at varying robot initial pose and constant friction coefficients.

## Simulation Scenario \#1



Forward and rotational velocities

■ The whole trajectory includes 10 segments with an overall length of about 3.93 m
■ Red-dashed lines represent control velocities constraints
■ Black solid lines denote the forward and angular control velocities obtained at varying robot initial pose.

## Simulation Scenario \#2



- Three additional obstacles (black boxes) are considered in the operating environment.
■ Red line denotes an optimal feasible trajectory including 14 segments with a full length of about 6.5 m .
- In such a scenario the optimal trajectory requires a loop to perform required 90deg turn.


## Simulation Scenario \#2

Forward and rotational velocities


## Conclusions

- In this paper the problem of motion planning of a skid- steered tracked mobile robot subject to skid and slip phenomena is tackled;
- A feedback control action is firstly designed to achieve trajectory tracking of mobile robot accounting for constraints on trajectory tracking error and robot control velocities;
- In order to find optimal feasible trajectory in terms of succession of segments to cross with an assigned nominal velocity, a procedure based on the A* shortest path algorithm is proposed;

■ Trajectory feasibility is guaranteed by recurring to set based arguments involving the solution of SDP minimization problems;

■ Finally, some numerical simulations are discussed to show effectiveness of the proposed approach.

Feasible trajectory planning algorithm for a skid-steered tracked mobile robot subject to skid and slip phenomena

V. A. Nardi A. Ferraro V. Scordamaglia

DIIES - Università degli Studi di Reggio Calabria - Reggio Calabria(RC) -ITALY


Università degli Studi Mediterranea di Reggio Calabria

- $A^{*}$ - like algorithm is adopted to compute a shortest path (if any) in terms of a succession of arcs connecting starting $V_{0} \in V$ and ending $V_{F} \in V$ nodes.
- $A^{*}$ algorithm is a classical approach in searching the best path in a graph. It relies upon exploration of the most promising arc according to an heuristic function estimating the lower-bound of the cost of path including arcs to be explored.

■ $A^{*}$ guarantees the exploration of fewer nodes than any other algorithm using the same heuristic if the heuristic function never overestimates the cost of path.

- The considered heuristic function is sum of two terms: a) the cost of computed path; b) the euclidean distance between the last explored node and destination node.
- If a succession of arcs $W_{O F}$ connecting $V_{O}$ and $V_{F}$ is explored, cost of path $\gamma_{O F}$ becomes an upper bound of the heuristic function. Thus, a path stops being explored when its heuristic exceeds the current upper bound.

■ Upper bound must be updated if a shorter path reaching the destination node is found.


[^0]:    ${ }^{1}$ V. Kothare et al., Robust constrained model predictive control using linear matrix inequalities 1996
    ${ }^{2}$ I. Kolmanovsky et al. Theory and computation of disturbance invariant sets for discrete time linear systems 1998

