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Natural disasters: a threat to people’s safety
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Robotic platforms for rescue and first aid operations

What can we do?

Implement an effective emergency response system.
Autonomous robotic platforms for first aid and rescue missions after disasters.

Advantages of using robotic systems

Robots can reach places inaccessible to human operators.
The use of robots instead of human operators can significantly increase the
safety of rescue personnel and the effectiveness of rescue operations.
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State of Art

First uses of robots in rescue missions

Some examples are:
the attacks of September 11 2001 (New York, USA);
the landslide in La Conchita (U.S.) 2005;
the Hurricanes Katrina (USA) and Wilma (USA) both in 2005;
the Midas Gold Mine collapse (U.S.) 2007;
Fukushima power plant nuclear disaster in 2011 (JPN);

Current status

Nowadays, the average time between the occurrence of a disaster and the actual
deployment of a robot is about 6.5 days, much longer than the 48 hours that repre-
sent the peak of the threated mortality curve.
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Technical issues

The reasons for this delay depend on many factors:

A) limited autonomy in terms of robot intelligence, power and mobility;
B) insufficient integration with the rescue coordination center;
C) limited capability to coordinate many robotic units deployed in the same

operational scenario.
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Funding Projects

Resilient and Secure Networked Multivehicle Systems in Adversary Environ-
ments granted by the Italian Ministry of University and Research (MUR) within
the PRIN 2022 program and European Union - Next Generation EU

Cooperative Heterogeneous Multi-drone SYStem for disaster prevention and
first response granted by the Italian Ministry of University and Research (MUR)
within the PRIN 2022 PNRR program, funded by the European Union through
the PNRR program

Objectives

We address some of the various technical and technological issues that cur-
rently limit the use of robotic systems in disaster relief in order to provide a
proof of concept for the entire (multi)-robotic system .
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Proposal keypoints

Problem specifically addressed

Feasible motion planning problem for an autonomous mobile robot moving from the
starting point to the target position in a cluttered scenario.

Application aspect

Main claim: the proposed strategy is
able to explicitly account for model un-
certainties and constraints which al-
ter in non-negligible manner the robot’s
motion capabilities.

Theoretical aspect

From a theoretical point of view, this is
achieved by resorting to the concept of
one-step-ahead controllable set.
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Mathematical preliminaries

Assuming that tk = k · Tc , where Tc is the sampling time, we consider the
following state space description of the discrete-time quasi-LPV model of
robot

x(tk+1) = A(α(tk )) · x(tk ) + B(α(tk )) · u(tk ) (1)

Assuming that the matrices A(α(t)) and B(α(t)) depend affinely on α(t), the
following polytopic representation is considered

{A(α(tk )),B(α(tk ))} ∈ Co{(As,Bs)} (2)

where As = A(αs) and Bs = B(αs) with

Co{(As,Bs)} =
M∑

s=1

πs(As,Bs). (3)
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One-step ahead ellipsoidal controllable sets

Consider the uncertain model (1) and assume that the control input is subject
to the following saturation:

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ Rm : uT u ≤ u} (4)

with u > 0.
Let’s suppose that the following constraint holds:

x(t) ∈ X , ∀t ≥ 0, X := {x ∈ Rn : xT Pqx ≤ 1, Pq > 0} (5)

To control the robot’s pose to zero, suppose we use the following control law:

u(t) = K · q(t) (6)

T0 is a positively invariant ellipsoidal set.
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One-step ahead controllable sets

The ellipsoidal sets of states i-steps
controllable to T

T0 := T

Tj := {x ∈ X : ∃u ∈ U : Aix +Biu ∈ Tj−1}
Tk(t)-1

x(t+1)

x(t)

Tk(t)

x_eq

U := {u ∈ Rm : uT u ≤ u} (7)

X := {x ∈ Rn : xT Pqx ≤ 1, Pq > 0} (8)

Tj is the largest ellipsoidal set that is compatible with the constraint (8) and includes
Tj−1, so that each x(t) belonging to Tj can be controlled to Tj−1 in one step by using
a control action compatible with the constraint (7).
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One-step ahead controllable sets Procedure

x
fx(0)

NiT
N
i-1

T

Let x(0) and xf be the initial and goal positions respectively.
Assume that there is a sequence of Ni one-step ahead controllable set.
There is a feasible path from x(0) to xf compatible with all prescribed
constraints, allowed uncertainties and obstacles in the cluttered scenario.
x(0) is controllable to xf in at least Ni moves . 10 / 18



Motion planning algorithm: Offline Phase

Repeat the process until the starting point is reached from the target position
setting some intermediate waypoints if necessary.

It is possible to guarantee that a path is feasible given the uncertain dynamics
of robot, constraints and obstacles in the cluttered scenario. 11 / 18



Motion planning algorithm: Online Phase
Let Tj be the smallest one-step controllable set containing x(t):

If j = 0, the control action is computed according to the following formula:
u(t) = K · x(t): x(t) is in T0, the control action is compatible with all the
prescribed constraints.

If j ̸= 0, the control action can be computed by solving the following
minimization problem:

min
u∈U

∥As · x(t) + Bs · u∥2
Tj−1

, s = 1 · · ·Ni (9)

s.t.
As · x(t) + Bs · u ∈ Tj−1 (10)

Remark

The control action u(t) ∈ U fulfils the prescribed constraints such that the state
evolution A(α(t))x(t) + B(α(t))u belongs to Tj−1 12 / 18



Example

Robot characteristics

A tracked mobile robot with R = 0.07
[m], D = 0.5 [m], and with the follow-
ing forward and rotational velocity con-
straints were considered:

a) V ∈ [0,0.4] [m/s];
b) ω ∈ [−120,120] [deg/s]

Uncertainties (µr , µl )

It is assumed that the sliding coefficients
for the two tracks can take values be-
tween [0.85,1.15].

q̇L(t) = RL
E(θ0) · G(t) · J · H(t) · J−1 · u(t)

(11)

RL
E(θ0) =

 cos(θ0) sin(θ0) 0
−sin(θ0) cos(θ0) 0

0 0 1


(12)

H(t) =
[
µr (t) 0

0 µl(t)

]
(13)

J =

[
R/2 R/2
R/D −R/D

]
(14)

G(t) =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

 (15)
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Example

Using Euler’s approximation with sampling time Ts, the following discrete-time quasi-
LPV model state space description comes out

qL(tk+1) = A(α(tk )) · qL(tk ) + B(α(tk )) · u(tk ) (16)

{A(α(tk )),B(α(tk ))} ∈ Co{(As,Bs)} being Co{(As,Bs)} =
∑N

s=1(As,Bs)

Mathematical Model

tk = k · Ts with Ts = 0.4[s]
Discrete uncertain linear model having N = 18 vertices .
A robust control action u(tk ) = K · qL(tk ) guarantees the stability of (16) in the
ellipsoidal set T0.
A family of 41 one-step ahead controllable sets were then defined
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Example - Offline Phase
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A path involving a sequence of 10 segments with a length of 46.861 [m] was
defined (black lines)
To guarantee the feasibility of selected path, 72 sequences of ellipsoidal sets
were identified (in red the projections onto the {x , y}-plane of the ellipsoidal
regions appropriately rotated)
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Example - Online Phase
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The control action is calculated according to the proposed online phase by solving
an optimization problem whose feasibility is guaranteed by the calculations
performed in the offline phase.
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Example - How does the online phase work?
At position A, the robot belongs to sequence 34-th.

The control action is calculated
to reach the point B which allows
the robot to traverse the ellip-
soidal sets of the 34-th sequence
(from the set with index 41 to the
ellipsoidal set with index 2) .

34-th sequence

35-th sequence

When the robot reaches the ellipsoidal set 2, the robot pose is contained in the
ellipsoidal controllable set with index 29 of sequence 35-th. This enables the
transition to the next sequence.
Similar behavior can be observed all along the path. This is the key procedure
by which the robot reaches the prescribed final pose.
Each jump upwards represents a transition to the successive sequence of el-
lipsoidal sets. 17 / 18



Principal Keypoints

An algorithm for computing an admissible motion sequence for an autonomous
mobile robot moving in a cluttered environment.
The proposed algorithm ensures collision-free motion compatible with model
uncertainties and constraints.
Set-theoretic argument : one-step-ahead controllable set.
Offline phase. The sequences of one-step-ahead controllable sets are planned.
An admissible collision-free motion strategy is defined to reach the prescribed
target accounting for model uncertainties, constraints and obstacles in the clut-
tered environment.
Online phase. Calculation of the robot control action. The control action is
computed in terms of online solution of a constrained minimization problem
whose feasibility is ensured by the analysis performed in the offline phase.
In order to show the effectiveness of the proposed algorithm, a numerical
example has been provided.
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One-step ahead controllable sets

The ellipsoidal sets of states i-steps
controllable to T

T0 := T

Tj := {x ∈ X : ∃u ∈ U : Aix +Biu ∈ Tj−1}
Tk(t)-1

x(t+1)

x(t)

Tk(t)

x_eq

U := {u ∈ Rm : uT u ≤ u}

X := {x ∈ Rn : xT Pqx ≤ 1, Pq > 0}

. Ellipsoidal set T0 is positively invariant for discrete-time uncertain system: there
exists a control law u(t) ∈ U such that once the closed-loop solution xCL(t) enters
inside that set at any given time t0, it remains in it for all future instants, i.e. xCL(t0) ∈
T0 → xCL(t) ∈ T0,∀t ≥ t0.
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