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Robotic platforms for rescue and first aid operations

Preliminary considerations

Implement an effective emergency response system.
Autonomous robotic platforms for first aid and rescue missions after disasters.

Advantages of using robotic systems

Robots can reach places inaccessible to human operators.
The use of robots instead of human operators can significantly increase the
safety of rescue personnel and the effectiveness of rescue operations.
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State of Art

First uses of robots in rescue missions

Some examples are:
the attacks of September 11 2001 (New York, USA);
the landslide in La Conchita (U.S.) 2005;
the Hurricanes Katrina (USA) and Wilma (USA) both in 2005;
the Midas Gold Mine collapse (U.S.) 2007;
Fukushima power plant nuclear disaster in 2011 (JPN);

Current status

Nowadays, the average delay between the occurrence of a disaster and the de-
ployment of robots is about 6.5 days - significantly longer than the 48 hours that
represent the critical peak of the mortality risk curve.
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Technical issues

The reasons for this delay depend on many factors:

A) limited autonomy in terms of robot intelligence, power and mobility;
B) insufficient integration with the rescue coordination center;
C) limited capability to coordinate many robotic units deployed in the same

operational scenario.
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Funding Projects

Resilient and Secure Networked Multivehicle Systems in Adversary Environ-
ments granted by the Italian Ministry of University and Research (MUR) within
the PRIN 2022 program and European Union - Next Generation EU

Cooperative Heterogeneous Multi-drone SYStem for disaster prevention and
first response granted by the Italian Ministry of University and Research (MUR)
within the PRIN 2022 PNRR program, funded by the European Union through
the PNRR program

Objectives

We address some of the various technical and technological issues that cur-
rently limit the timely deployment of robotic platforms in disaster relief.
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Proposal keypoints

The core of this paper relies on the design of an original networked control
architecture for efficiently driving autonomous ground vehicles in rescue mis-
sions within cluttered, static and unknown environments.

From a theoretical point of view, this is accomplished by resorting to a set-
theoretic receding horizon control that includes the following:

1 a protocol capable of adequately exploiting past data without compromising fea-
sibility, closed-loop stability, and obstacle avoidance properties;

2 the development of a switch-like control strategy responsible for modifying the
trajectory tube whenever necessary to avoid any collision risk.

Application aspect: path planning and control unit are placed on the remote
side of control system to reduce on-board energy consumption caused by com-
putational tasks.
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Mathematical preliminaries

Assuming that tk = k · Tc , where Tc is the sampling time, we consider the
following state space description of the discrete-time quasi-LPV model of
robot

x(tk+1) = A(α(tk )) · x(tk ) + B(α(tk )) · u(tk ) (1)

Assuming that the matrices A(α(t)) and B(α(t)) depend affinely on α(t), the
following polytopic representation is considered

{A(α(tk )),B(α(tk ))} ∈ Co{(As,Bs)} (2)

where As = A(αs) and Bs = B(αs) with

Co{(As,Bs)} =
M∑

s=1

πs(As,Bs). (3)
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Robust One-Step Ahead Controllable Set (ROSAC)
Consider the uncertain model (1) and assume that the following ellipsoidal
constraints:

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ Rm : uT u ≤ u2
max} (4)

x(t) ∈ X , ∀t ≥ 0, X := {x ∈ Rn : xT x ≤ x2
max} (5)

To control the robot’s pose, suppose we use the following Robust Control Law
(RCL) which guarantees the robust stability of (1) according to prescribed
constraints

u(t) = K · x(t − τ(t)), τ(t) ≤ τ̄ , ∀t ≥ 0 (6)

within the Robust Positively Invariant (RPI) ellipsoidal set T0, τ̄ represents an
upper bound of the time delay introduced in the control loop.

Robust Positively Invariant set : if the system’s state starts within RPI, it will remain
within RPI for all future time steps, fulfilling all prescribed constraints, given the
uncertain dynamics and allowable time delay. 8 / 22



Robust One-Step Ahead Controllable Set (ROSAC)

The ellipsoidal sets of states i-steps
controllable to T

T0 := T

Tj := {x ∈ X : ∃u ∈ U : Aix +Biu ∈ Tj−1}
Tk(t)-1

x(t+1)

x(t)

Tk(t)

x_eq

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ Rm : uT u ≤ u2
max} (7)

x(t) ∈ X , ∀t ≥ 0, X := {x ∈ Rn : xT x ≤ x2
max} (8)

Tj is the largest ellipsoidal set that is compatible with the constraint (8) and includes
Tj−1, so that each x(t) belonging to Tj can be controlled to Tj−1 in one step by using
a control action compatible with the constraint (7). Tj is computed by solving SDP
optimization problem involving LMIs constraints.
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ROSAC Procedure

x
fx(0)

NiT
N
i-1

T

Assume that there is a sequence of Ni one-step ahead controllable set.
There is a feasible path from x(0) to xf compatible with all prescribed
constraints, allowed uncertainties and obstacles in the cluttered scenario.
x(0) is controllable to xf in at least Ni moves .
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Motion planning algorithm: Offline Phase

Repeat the process until the starting point is reached from the target position
setting some intermediate waypoints if necessary.

It is possible to guarantee that a path is feasible given the uncertain dynamics
of robot, constraints and obstacles in the cluttered scenario. 11 / 22



Motion planning algorithm: Online Phase

Let Tj be the smallest one-step controllable set containing x(t):
If j = 0, the control action is computed according to RCL guaranteeing all the
prescribed constraints.

If j ̸= 0, the control action can be computed by solving the following
minimization problem:

min
u∈U

∥As · x(t) + Bs · u∥2
Tj−1

, s = 1 · · ·Ni (9)

s.t.
As · x(t) + Bs · u ∈ Tj−1 (10)

Remark

The control action u(t) ∈ U fulfils the prescribed constraints for any allowable time
delay, such that the state evolution A(α(t))x(t) + B(α(t))u belongs to Tj−1
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Example

Jaguar V4 by Dr.Robot

It is a tracked robotic platform with a
footprint of 70 × 50 cm2. Forward and
rotational speeds satisfy the following
bounds:

a) V ∈ [0,0.4] [m/s];
b) ω ∈ [−60, 60] [deg/s]

Uncertainties (µr , µl )

It is assumed that the sliding coefficients
for the two tracks can take values be-
tween [0.8, 1.2].

q̇L(t) = RL
E(θ0) · G(t) · J · H(t) · J−1 · u(t)

(11)

RL
E(θ0) =

 cos(θ0) sin(θ0) 0
−sin(θ0) cos(θ0) 0

0 0 1


(12)

H(t) =
[
µr (t) 0

0 µl(t)

]
(13)

J =

[
1/2 1/2
1/D −1/D

]
(14)

G(t) =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

 (15)

13 / 22



Example

Using Euler’s approximation with sampling time Ts, the following discrete-time quasi-
LPV model state space description comes out

qL(tk+1) = A(α(tk )) · qL(tk ) + B(α(tk )) · u(tk ) (16)

{A(α(tk )),B(α(tk ))} ∈ Co{(As,Bs)} being Co{(As,Bs)} =
∑M

s=1(As,Bs)

Mathematical Model

tk = k · Ts with Ts = 0.4[s]
Discrete uncertain linear model having M = 12 vertices .
A robust control action u(tk ) = K · qL(tk − τ(tk )) guarantees the stability of
(16) in RPI ellipsoidal set T0 being τ(tk ) ≤ τ̄ , τ̄ = 2
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Example- Known Scenario- Offline Phase
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A path involving a sequence of 10 segments with a length of 46.861 [m] was
defined (black lines)
To guarantee the feasibility of selected path, 72 sequences of ellipsoidal sets
were identified (in red the projections onto the {x , y}-plane of the ellipsoidal
regions appropriately rotated)
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Example - Online Phase
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The control action is calculated according to the proposed online phase by solving
an optimization problem whose feasibility is guaranteed by the calculations
performed in the offline phase.

16 / 22



Example - How does the online phase work?
At position A, the robot belongs to sequence 34-th.

The control action is calculated to
reach the point B which allows the
robot to traverse the ellipsoidal sets
of the 34-th sequence (from the set
with index 41 to the ellipsoidal set
with index 2) .

34-th sequence

35-th sequence

When the robot reaches the ellipsoidal set 2, the robot pose is contained in the
ellipsoidal controllable set with index 29 of sequence 35-th. This enables the
transition to the next sequence.
Similar behavior can be observed all along the path. This is the key procedure
by which the robot reaches the prescribed final pose.
Each jump upwards represents a transition to the successive sequence of el-
lipsoidal sets. 17 / 22



Experimental Setup - Partially known Scenario
The proposed algorithm was used for the following experimental test.
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Robot is equipped with a front-mounted LIDAR sensor providing a maximum depth
perception up to R = 10 m. Measurement campaign has estimated Maximum
Allowable Transfer Interval (τ̄ = 2) and sliding coefficients. SLAM algorithm is used
for navigation purposes. 18 / 22



Experiment

By resorting to the available information on the environment at the time
instant tk = 0, the Path Planner has determined a sequence Γ of twenty
way-points connecting starting (red star) and ending poses (green hexagon).
For all possible occurrences of the induced delay the relative family of ROSAC
sequences, is computed. Each ROSAC consists of N = 41 ellipsoids.
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Experiment
At tk = 10.4 s, the vehicle has moved where a non-viability condition occurs :
the state trajectory tube resulting from the nominal path Γ is no longer viable
due to a collision with a previously unknown obstacle.
On the basis of updated information of the environment: a new way-points are
determined and the overlapped ellipsoids are computed.
During the update, the vehicle is driven through the previous trajectory tube
up to the last safe ROSAC sequence.
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Experiment
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Principal Keypoints

Set-theoretic argument : one-step-ahead controllable set.
A networked set-theoretic based model predictive control architecture has been
developed for autonomous robots operating in cluttered, static and unknown
environments.
It has been formally shown that the proposed algorithm is capable to guarantee
the constraint satisfaction and anti-collision capabilities despite of time-delay
occurrences along the communication channel.
Real experiments have shown the effectiveness of this solution when unpre-
dictable obstacles prevent the use of the nominal controller.
Future studies will attempt to extend the approach to multi-robot configurations,
as this may improve the chances of mission success in complex operations.
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Experiment
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